Sunday, August 17, 2008

Princípios de um alto-falante

Dynamic Loudspeaker Principle


A current-carrying wire in a magnetic field experiences a magnetic force perpendicular to the wire.


 


 


 

Loudspeaker Details

An enormous amount of engineering work has gone into the design of today's dynamic loudspeaker. A light voice coil is mounted so that it can move freely inside the magnetic field of a strong permanent magnet. The speaker cone is attached to the voice coil and attached with a flexible mounting to the outer ring of the speaker support. Because there is a definite "home" or equilibrium position for the speaker cone and there is elasticity of the mounting structure, there is inevitably a free cone resonant frequency like that of a mass on a spring. The frequency can be determined by adjusting the mass and stiffness of the cone and voice coil, and it can be damped and broadened by the nature of the construction, but that natural mechanical frequency of vibration is always there and enhances the frequencies in the frequency range near resonance. Part of the role of a good enclosure is to minimize the impact of this resonant frequency.


Types of Enclosures

The production of a good high-fidelity loudspeaker requires that the speakers be enclosed because of a number of basic properties of loudspeakers. Just putting a single dynamic loudspeaker in a closed box will improve its sound quality dramatically. Modern loudspeaker enclosures typically involve multiple loudspeakers with a crossover network to provide a more nearly uniform frequency response across the audio frequency range. Other techniques such as those used in bass reflex enclosures may be used to extend the useful bass range of the loudspeakers.



 

Use of Multiple Drivers in Loudspeakers

Even with a good enclosure, a single loudspeaker cannot be expected to deliver optimally balanced sound over the full audible sound spectrum. For the production of high frequencies, the driving element should be small and light to be able to respond rapidly to the applied signal. Such high frequency speakers are called "tweeters". On the other hand, a bass speaker should be large to efficiently impedance match to the air. Such speakers, called "woofers", must also be supplied with more power since the signal must drive a larger mass. Another factor is that the ear's response curves discriminate against bass, so that more acoustic power must be supplied in the bass range. It is usually desirable to have a third, mid-range, speaker to achieve a smooth frequency response. The appropriate frequency signals are routed to the speakers by a crossover network.


http://hyperphysics.phy-astr.gsu.edu/Hbase/Audio/spk.html#c3

0 Comments: